
1

Performance measurement of ATLAS Data
Collection software with QoS

Yoshiji Yasu, Yoji Hasegawa, Yasushi Nagasaka and Makoto Shimojima
On behalf of the ATLAS TDAQ DataFlow community[1]

Abstract— IP-based Quality of Service (QoS) in Linux has been
applied to ATLAS Data Collection(DC) software with Gigabit
Ethernet and then the performance has been measured. The
measurement showed that the QoS improved the event building
performance. The results are described.

I. INTRODUCTION

CONGESTION avoidance of event data flow in ATLAS
event builder network[2] is crucial[3]. Traffic manage-

ment of the data flow is an essential point to avoid the
congestion. Therefore, adopting congestion avoidance and
flow control techniques for the event builder using switching
network technologies are major issues.

On one hand, Gigabit Ethernet is one of the technologies
which enables a high speed transfer for the event builder[4]
and a major candidate of ATLAS event builder network. Eth-
ernet provides a best-effort service to all of their applications,
with few traffic shaping method in comparison with ATM. IP
QoS technique, which is a control scheme at the level of event
fragment such as traffic shaping for a packet-oriented network,
had been investigated[5], [6], [7].

On the other hand, there are two different scenarios of data
flow for an event builder, which is distinguished by whether
the event manager informs the assignment to the sources or the
destination. A push scenario is that the sources are responsible
for initiating the data transfer, while a pull scenario is that the
destination initiates the transfer by requesting the sources to
send the data.

Both of the push and pull scenarios are implemented into
the ATLAS event builder and selectable at execution for
investigating the feasibility of the event builder architecture[8].

II. CONFIGURATION FOR MEASUREMENTS ON ATLAS
EVENT BUILDER

A. Hardware configuration

The measurement used PCs connected to one BATM Gigabit
Ethernet switches located at Building 513 testbed at CERN.
The typical specification of PCs is following:

� CPU : Dual Xeon 2.2GHz/2.4GHz
� Memory : DDR 200/266-SDRAM 1GB

Y.Yasu are with High Energy Accelerator Research Organization(KEK),
Tsukuba, Japan (e-mail: Yoshiji.YASU@kek.jp)

Y.Hasegawa is with Shinshu University, Matsumoto, Japan
Y.Nagasaka is with Hiroshima Institute of Technology, Hiroshima, Japan
M.Shimojima is with Nagasaki Institute of Applied Science, Nagasaki,

Japan

� OS : CERN RedHat 7.3.1 (Kernel 2.4.18-27) with
CapServer patch

� NIC : Intel Pro 1000, driver e1000
� GbE switch : BATM
� kernel buffer size = 8MB
� kernel scheduling time : HZ parameter = 4096

B. DataCollection Software Configuration

The DataCollection (DC) software[9] of the release DC-00-
02-02 and the online software[10] of the release online-00-17-
02 were used for this measurement.

The DC software parameters relevant to the measurement
are following:

1) ROS parameters
� Number of ROSs : variable
� RoB data size (robDataSize) : variable

2) SFI parameters
� Number of SFIs : variable
� MaxNumberOfAssembledEventsHigh : 50
� MaxNumberOfAssembledEventsLow : 45
� DefaultCredits : 10
� TimeoutSetup : 500
� TrafficShapingParameter : 30

3) DFM parameters
� Credits : 3
� Timeout : 5000
� MaxAssignqueueSize : 1000
� ClearGroupSize : 50
� DecisionGroupSize : 10

4) LVL2 decision : one LVL2 accept in one decision
5) Message passing protocol: UDP/IP

Each of ROSs, SFIs and DFM applications ran on a host
exclusively. Root and DC controllers ran on a host. DFMau-
totester7 which generates L2accepts ran on the same host on
which L2SV application was running. The L2accept means
good event decided by L2 trigger.

III. MEASUREMENTS WITHOUT QOS

The measurements of event building performance were done
for the push and pull scenarios with the same setup. The results
for both scenarios are compared.



2

0

5

10

15

20

25

D
FM

 E
oE

 R
at

e 
(k

H
z)

ROS x SFI = 1 x 1
L2accept Rate = 25kHz
No QoS

Push

Pull

0

10

20

30

40

50

60

0 2.5 5 7.5 10 12.5 15 17.5

robDataSize (kB)

S
FI

 T
hr

ou
gh

pu
t (

M
B

/s
)

0

5

10

15

20

25

0 10 20 30 40 50 60
L2accept Rate(kHz)

D
FM

 E
oE

 R
at

e 
(k

H
z)

ROS x SFI = 1 x 1

RoB data size = 1kB

No QoS

Push

Pull
(a)

(b)

(c)

Fig. 1. End of Event rate as a function of (a) L2accept rate and (b)
robDataSize and (c) throughput as a function of robDataSize are shown for
the push and pull scenarios at 1 � 1 configuration.

A. Results in Configuration without Packet Loss

Figure 1 shows the results in 1 ROS � 1 SFI configuration.
Figure 1 (a) shows the rate of End of Event (EoE), which is
received by the DFM, as a function of L2accept rate generated
by DFMautotester7 with fixed robDataSize of 1 kB. The EoE
means the event is successfully built. The robDataSize means
the size of event fragment, which is sent from each ROS
to a SFI. For the push scenario, the EoE rate increases to

� 20kHz according to increase of L2accept rate, then the rate
is saturated for higher L2accept rate. For the pull scenario,
the behavior is the same as that for the push scenario, but the
maximum EoE rate is 14 kHz.

Figure 1 (b) and (c) show EoE rate and throughput at the
SFI as a function of robDataSize with fixed L2accept rate of
25 kHz. As the robDataSize increase, the EoE rate decreases.
Throughput increases up to 52 MB/s for robDataSize of 14
kB, then rapid drop of EoE rate and throughput was observed
for larger robDataSize.

Generally, the pull scenario is thought to be better than the
push scenario from the point of view of congestion avoidance
of the network because the destination (SFI) initiates the data
transfer from the sources (ROS) and we could easily make it
serial. However, since an extra message is involved for each
request in the pull scenario, this incurs some performance
penalty. In other words, the push scenario has a potential
to outperform the pull scenario if we could get rid of traffic
congestion.

ATLAS event builder also implements an algorithm to avoid
the coherent data flow to SFI. As an example, Figure 2 shows

0

5

10

15

20

0 25 50 75 100
L2accept Rate(kHz)

D
FM

 E
oE

 R
at

e 
(k

H
z)

robDataSize = 1kB Push

Pull

0

5

10

15

20

D
FM

 E
oE

 R
at

e 
(k

H
z)

L2accept rate = 20kHz

Th
ro

ug
hp

ut
 / 

S
FM

 (M
B

/s
)

0

10

20

30

0 2.5 5 7.5 10
robDataSize (kB)

(a)

(b)

(c)

RoS x SFI = 13 x 13 No QoS

RoS x SFI = 13 x 13

No QoS

Fig. 2. End of Event rate as a function of (a) L2accept rate and (b)
robDataSize and (c) throughput as a function of robDataSize are shown for
the push and pull scenarios at 13 � 13 configuration. The measurements were
performed at ICEPP, University of Tokyo. Thirty two PCs with Pentium III
1.4GHz and 512MB memeory and a GbE switch of BlackDiamond 6816 with
4G8Gi modules.

the results at 13 ROSs � 13 SFIs configuration. The behaviors
of the EoE rate and the throughput at one SFI are similar to
those in 1 ROS � 1 SFI configuration, though the absolute
values are different. Thus, the data flow to SFI was not
concentrated in 13 ROSs � 13 SFIs configuration.

B. Results in Configuration with Packet Loss

Figure 3 (a) shows EoE rate as a function of L2accept rate.
The robDataSize was fixed to 1 kB.

The EoE rate is saturated at 5 kHz for the push scenario
and 4 kHz for the pull scenario. This is due to high CPU
utilization of the SFI application.

Figure 3 (b) and (c) show EoE rate and throughput at the
SFI as a function of robDataSize, respectively. L2accept rate
was fixed to 5 kHz at which the event building rates reached
to their plateau for both of the push and pull scenarios.

According to increase of robDataSize, EoE rate gradually
decreases, on the other hand throughput at the SFI increases.
Throughput of the pull scenario can reach � 90 MB/s for
robDataSize of 7 kB and above. The congestion caused by
concentration in the pull scenario was not observed in 6 ROSs

� 1 SFI configuration, because the SFI reads data from sources
sequentially.



3

0

1

2

3

4

5

6

D
FM

 E
oE

 R
at

e 
(k

H
z) ROS x SFI = 6 x 1

L2accept Rate = 5kHz
No QoS

Push

Pull

0

20

40

60

80

100

0 2.5 5 7.5 10 12.5 15

robDataSize (kB)

S
FI

 T
hr

ou
gh

pu
t (

M
B

/s
)

(b)

(c)

0

1

2

3

4

5

6

7

0 5 10 15 20
L2accept Rate(kHz)

D
FM

 E
oE

 R
at

e 
(k

H
z) ROS x SFI = 6 x 1

RoB data size = 1kB
No QoS

Push

Pull

(a)

Fig. 3. End of Event rate as a function of (a) L2accept rate and (b)
robDataSize and (c) throughput as a function of robDataSize are shown for
the push and pull scenarios.

For the push scenario, throughput increases to 80 MB/s
according to increase of robDataSize. However, when rob-
DataSize is larger than 4 kB, throughput drops rapidly and
almost no traffic was observed for robDataSize larger than 6
kB.

At this situation a lot of re-asks that an SFI requests ROSs
to send packets again were observed, so that events can not be
built at all. This implies that packet loss occurred in the push
scenario is due to congestion or buffer overflow at the SFI.

IV. MEASUREMENTS WITH QOS IN PUSH SCENARIO

Taking into account of the results shown in the preceding
section, the traffic shaping technique without any modification
of the event builder software was investigated. As the results,
IP QoS based traffic shaping technique had been investigated
as one of the control schemes at the level of event frag-
ment. The IP QoS has been implemented in standard Linux
kernel and can manage the data flow at the IP level of the
network[11].

A. What is QoS

QoS stands for Quality of Service. In elements of QoS
technology, packet classification, packet scheduling and traffic
shaping techniques are important for the event builder. The
packet classification is to classify packets in groups, such
as Class Based Queueing (CBQ)[12]. The packet scheduler
arranges the scheduling for outgoing packets according to the
queueing method and the buffer management selected. Token

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 200 400 600 800 1000
Message Number

Ti
m

e 
In

te
rv

al
 (m

se
c) QoS Bandwidth= 20Mbit/s

Trigger Rate = 10kHz
Message Size = 1kB

Fig. 4. Scheduling time interval between two messages sending sequentially
as a function of message id number. Messages whose size is fixed to 1kB are
generated in 10kHz. QoS assigned the bandwidth 20Mbit/s.

Bucket Filter (TBF) is one of the ways. The outgoing packet
is sent at the rate determined by the size of the token buffer
and the rate in which tokens are supplied. The traffic shaper
is a technology to make the burst flat.

Linux standard kernel implements those QoS
functionalities[11]. It is important to note that only the
outgoing packets are controlled in the output queues.
Incoming packets are accepted in a best effort basis.

It is also important to realize that packets are scheduled at
most in the granularity allowed by the Linux kernel scheduler,
which is governed by the parameter called HZ. The average
input rate of Atlas event builder is � 3 kHz. The data will
be expected to come to the event builder at � 3 kHz. The
data should be scheduled at least over � 3 kHz for the traffic
shaping. However, the default value of the HZ parameter is 100
or 512 depending on the kernel version. The HZ parameters of
100 and 512 corresponds to the scheduling frequency of 100
and 512 Hz, respectively. This means Linux kernel with the
default value can not shape the traffic of the incoming data
to the event builder. Therefore, we made Linux kernel with
the HZ parameter of 4096. The Linux kernel with the value
can shape the traffic of event builder because the parameter of
4096 makes the Linux kernel scheduling frequency 4096 = 4
kHz.

Figure 4 shows interval of scheduling time of two sequential
message sent from a host to another host as a function of
message id number. Once the buffer for outgoing messages is
fully filled, messages are sent out in the constant time interval
of 0.25 msec. This means that the outgoing messages are
scheduled at 4 kHz.

B. QoS Configuration

Figure 5 shows the QoS configuration of each ROS. The
configuration defines a queueing discipline, CBQ as a root
with handler of 1: and its daughter class 1:1 which is defined
in the root. Bandwidth is set 1000Mbit/s to each of two classes.
The class 1:1 has another scheduler using TBF. For this



4

Root Class(CBQ) 1: bandwidth 1000Mbit/s

Class(CBQ) 1:1 
bandwidth 1000Mbit/s

Scheduler
(TBF)
20Mbit/sClassifier

U32:

Data

Fig. 5. QoS configuration used in this measurement. Because only one
daughter class(1:1) is defined in the root class (1:), the classifier do nothing
in this case. Bandwidth of this configuration is controlled by the scheduler
with the TBF queueing discipline.

0

1

2

3

4

5

6

D
FM

 E
oE

 R
at

e 
(k

H
z)

ROS x SFI = 6 x 1

L2accept Rate = 5kHz

Push No QoS

Push QoS(20Mbps)

Push QoS(40Mbps)

Push QoS(50Mbps)

Pull No QoS

0

20

40

60

80

100

0 2.5 5 7.5 10 12.5 15
robDataSize (kB)

S
FI

 T
hr

ou
gh

pu
t (

M
B

/s
)

(a)

(b)

Fig. 6. (a) End of Event rate and (b) throughput as a function of robDataSize
and QoS parameters are shown for the push scenario.

configuration, the network bandwidth is essentially controlled
by the TBF scheduler.

C. Results

Figure 6 (a) and (b) show End of Event rate and throughput
at SFI as a function of robDataSize in 6 ROSs � 1 configura-
tion in case of the push scenario with bandwidth of 20Mbit/s,
40Mbit/s and 50Mbit/s assigned by QoS as well as the case
of no QoS applied.

In case of bandwidth of 20 Mbit/s or 40 Mbit/s, the through-
put became constant and was independent of robDataSize
when the throughput reached to the value limited by QoS. In
this region, re-asks decreased while there was a lot of re-asks
observed in case of no QoS applied.

However when the bandwidth was assigned 50 Mbit/s, the
traffic control did not work and the similar behavior was
observed as that for no QoS applied.

The QoS technique applied to the ROS PCs enabled the
improvement of the Atlas event builder shown in Figure 6

even if there is no global traffic control of the event builder
data flow.

V. CONCLUSIONS

The performance of ATLAS event builder software was
measured for case of the push scenario with QoS and the
effect of QoS to the software were evaluated.

In the condition in which no packet loss occurs, the push
scenario outperforms the pull scenario, since the pull scenario
takes overhead due to sending extra control messages.

On the other hand, in the push scenario packet loss at the
SFI occurs in the condition with larger message size at higher
trigger rate and no QoS applied. As a result event building
could not be done. However a suitable bandwidth applied to
ROSs by QoS makes the event builder working even in the
condition which events could not be built without QoS.

Now the conclusions are as follows;
1) The pull scenario is better than the push scenario even if

the degradation of the performance in the pull scenario
was a little bit observed, although large scale ATLAS
event builder is so complicated and the results from a
small scale test-bed can not be extrapolated easily.

2) IP QoS technique is a good traffic shaping one from
viewpoint of the method without modification of the
event builder software, but the shaping technique is not
always effective on the event builder network. Thus, the
QoS technique should be investigated toward the future
ATLAS event builder.

ACKNOWLEDGMENT

We thank to Takahiko Kondo and Masaharu Nomachi for
his support and encouragement. We also thank to Tetsuro
Mashimo, Hiroshi Matsumoto, Stefan Stancu, Marian Zurek,
Hanspeter Beck, Christian Haeberli and David Francis, for
their support.

REFERENCES

[1] The ATLAS TDAQ DataFlow community http://atlas.web.cern.ch/-
Atlas/GROUPS/DAQTRIG/DataFlow/DFlowAuthors.pdf

�

[2] ATLAS TDAQ: A Network-based Architecture, HP.Beck, R.W.Dobinson,
K.Korcyl, M.LeVine, DC-59, February 2000.

[3] Atlas High-Level Triggers, DAQ and DCS; Technical Proposal.
CERN/LHCC/2000-17, March 2000.

[4] Yoji Hasegawa, Yasushi Nagasaka, Yoshiji Yasu, DAQ/EF-1 Event
Builder system and Linux/Gigabit Ethernet, ATL-DAQ-2000-008, March
2000

[5] Y.Yasu, Y.Nagasaka, A.Manabe, M.Nomachi, H.Fujii, Y.Watase,
Y.Igarashi, E.Inoue, H.Kodama, Evaluation of Gigabit Ethernet with
Quality of Service for event builder, the 11th IEEE Trans. on Nucl. Sci.,
Santa Fe, New Mexico, June 14-18, 1999

[6] Y.Yasu, Y.Nagasaka, Y.Hasegawa, A.Manabe, M.Nomachi, H.Fujii,
Y.Watase, Quality of Service on Gigabit Ethernet for Event Builder,
the 3rd International Data Acquisition Workshop on Networked Data
Acquisition Systems, Lyon, France, October 20, 2000

[7] Y.Yasu, A.Manabe, Y.Nagasaka, Y.Hasegawa, M.Shimojima, M.Nomachi,
H.Fujii and Y.Watase on behalf of the Atlas Trigger/DAQ group, Quality
of Service on Linux for the Atlas TDAQ Event Building Network,
International Conference on Computing in High Energy and Nuclear
Physics CHEP2001, Beijing, September 3-7, 2001

[8] Message Flow: High-Level Description, HP.Beck, C.Haeberli, DC-12,
June 2002

[9] ATLAS DataCollection home page,
http://atlas.web.cern.ch/Atlas/GROUPS/DAQTRIG/DataFlow/
DataCollection/DataCollection.html



5

[10] ATLAS Online software home page,
http://atlas-onlsw.web.cern.ch/Atlas-onlsw/

[11] Internet Protocol - Quality of Service,
http://qos.ittc.ukans.edu/howto

[12] S.Floyd and V.Jacobson, Link-sharing and Resource Management Mod-
els for Packet Networks, IEEE/ACM Transactions on Networking, Vol.3
No.4, August 1995

�
M. Abolins, A. Dos Anjos, M. Barisonzi, H.P. Beck, M. Beretta, R.

Blair, J. Bogaerts, H. Boterenbrood, D. Botterill, M. Ciobotaru, E. Palencia
Cortezon, R. Cranfield, G. Crone, J. Dawson, B. DiGirolamo, R. Dobinson,
Y. Ermoline, M.L. Ferrer, D. Francis, S. Gadomski, S. Gameiro, P. Golonka,
B. Gorini, B. Green, M. Gruwe, C. Haeberli, Y. Hasegawa, R. Hauser, C.
Hinkelbein, R. Hughes-Jones, P. Jansweijer, M. Joos, A. Kaczmarska, G.
Kieft, E. Knezo, K. Korcyl, A. Kugel, A. Lankford, G. Lehmann, M. LeVine,
W. Liu, T. Maeno, M. Losada Maia, L. Mapelli, B. Martin, R. McLaren, C.
Meirosu, A. Misiejuk, R. Mommsen, G. Mornacchi, M. Muller, Y. Nagasaka,
K. Nakayoshi, I. Papadopoulos, V. Perez-Reale, J Petersen, P. de Matos Lopes
Pinto, D. Prigent, J. Schlereth, M. Shimojima, R. Spiwoks, S. Stancu, J.
Strong, L. Tremblet, J. Vermeulen, P. Werner, F. Wickens, Y. Yasu, M. Yu,
H. Zobernig, M. Zurek


