E246 :
 Search for T violation in the $K^{+} \rightarrow \pi^{0} \mu^{+} v$ Decay

E470:
 Branching ratio measurement of direct photon emission in $K^{+} \rightarrow \pi^{+} \pi^{0} \gamma$

J. Imazato
IPNS, KEK
KEK-PS External Review 2008
January 22, 2008
E246 : main experiment
E470 : byproduct experiment

Transverse μ^{+}polarization P_{T} in $K_{\mu 3}$

$$
\begin{aligned}
& K^{+} \rightarrow \pi^{0} \boldsymbol{\mu}^{+} \boldsymbol{v} \text { decay } \\
& P_{T}=\frac{\sigma_{\mu} \cdot\left(\boldsymbol{p}_{n^{\prime} \times} \times p_{u^{*}}\right)}{\left|\left(p_{\pi!} \times p_{\mu}\right)\right|}
\end{aligned}
$$

- P_{T} is T-odd and spurious effects from final state interaction are small. Non-zero P_{T} is a signature of T violation.
- Standard Model contribution to $P_{T}: \quad P_{T}(\mathrm{SM})<10^{-7}$
- Spurious effects from final state interactions : $P_{T}(\mathrm{FSI})<10^{-5}$
- P_{T} of $\mathcal{O}\left(10^{-3} \sim 10^{-4}\right)$ is a very sensitive probe of CP violation other than SM
-There are theoretical models which allow sizeable P_{T} without conflicting with other experimental constraints.

Possible origins of P_{T}

Effective four-fermion interaction

$\begin{aligned} L= & -G_{F} / \sqrt{ } 2 \sin \theta_{\mathrm{C}} \bar{s} \gamma_{\alpha}\left(1-\gamma_{5}\right) u \bar{v} \bar{\gamma}^{\alpha}\left(1-\gamma_{5}\right) \mu \\ & +G_{S} \bar{s} u \bar{v}\left(1+\gamma_{5}\right) \mu+G_{P} \overline{\gamma_{5}} u \bar{v}\left(1+\gamma_{5}\right) \mu \\ & +G_{V} \bar{s} \gamma_{\alpha} u \bar{v} \gamma^{\alpha}\left(1-\gamma_{5}\right) \mu+G_{A} \bar{s} \gamma_{\alpha} \gamma_{5} u \bar{v} \gamma^{\alpha}\left(1-\gamma_{5}\right) \mu+h . c . \end{aligned}$		
	$K_{\mu 3}\left(K^{+} \rightarrow \pi^{0} \mu^{+} v\right)$	$K_{\mu \nu \gamma}\left(K^{+} \rightarrow \mu^{+} v \gamma\right)$
P_{T} origin interfering with G_{F}	$\underset{\text { (scalar) }}{G_{S}}$	$\begin{gathered} G_{P}, \quad G_{R}=\left(G_{V}+G_{A}\right) / 2 \\ \text { (pseudoscalar \& right-handed) } \end{gathered}$
$\left\langle P_{T}\right\rangle=$	$\begin{gathered} \sim 0.15 \operatorname{Im} \Delta_{S} \\ \operatorname{Im} \Delta_{S}=\frac{\sqrt{2} 2\left(m_{K}^{2}-m_{\pi}^{2}\right) \operatorname{Im} G s^{*}}{\left(m_{s}-m_{H}\right) m_{\mu} G_{F} \sin \theta_{C}} \\ = \\ \quad 2 \operatorname{Im} \xi \\ \left(\xi=f_{-} / f_{+}\right) \end{gathered}$	$\begin{gathered} \sim 0.1 \operatorname{Im} \Delta_{P}+0.3 \operatorname{Im} \Delta_{R} \\ \operatorname{Im} \Delta_{P}=\frac{\sqrt{2} m_{K}{ }^{2} \operatorname{Im} G_{P}}{\left(m_{s}+m_{u}\right) m_{\mu} G_{F} \sin \theta_{C}} \\ \operatorname{Im} \Delta_{R}=\frac{\sqrt{2} \operatorname{Im} G_{R}}{G_{F} \sin \theta_{C}} \end{gathered}$

Model descriptions of P_{T}

$$
\begin{gathered}
P_{T}=\operatorname{Im} \xi \cdot \frac{m_{\mu}}{m_{K}} \frac{\left|\vec{p}_{\mu}\right|}{\left[E_{\mu}+\left|\vec{p}_{\mu}\right| \vec{n}_{\mu} \cdot \vec{n}_{\nu}-m_{\mu}^{2} / m_{K}\right]} \quad \operatorname{Im} \xi=\frac{\left(m_{K}^{2}-m_{\pi}^{2}\right) \operatorname{Im} G_{S}^{*}}{\sqrt{2}\left(m_{s}-m_{u}\right) m_{\mu} G_{F} \sin \theta_{C}} \\
P_{T} \text { is sensitive to scalar interactions }
\end{gathered}
$$

- Multi-Higgs doublet (3 Higgs doublet) model
$-\operatorname{Im} \xi=\left(m_{K}{ }^{2} / m_{H}{ }^{2}\right) \operatorname{Im}\left(\gamma_{1} \alpha_{1}{ }^{*}\right)$
- $\left|\operatorname{Im}\left(\gamma_{1} \alpha_{1}{ }^{*}\right)\right|<544\left(m_{H} / \mathrm{GeV}\right)^{2}$ from the E246 limit
$-B \rightarrow \tau v X$ constraints also $\operatorname{Im}\left(\gamma_{1} \alpha_{1}{ }^{*}\right)$ but weaker $\left(<1900\left(m_{H} / \mathrm{GeV}\right)^{2}\right)$
$-n$-EDM and $b \rightarrow s \gamma$ constraint differently $\operatorname{Im}\left(\alpha_{1} \beta_{1}{ }^{*}\right)$
- SUSY with squark mixing
$-\operatorname{Im} \xi \propto \operatorname{Im}\left[V_{33}{ }^{H+} V_{32}{ }^{D L *} V_{31}{ }^{U R *}\right] / m_{H}{ }^{2}$
- $m_{H} \geq 140 \mathrm{GeV}$ from the E246 limit and no stringent limit from other modes
- SUSY with R-parity violation
$-\operatorname{Im} \xi^{l} \sim \operatorname{Im}\left[\lambda_{2 \mathrm{i} 2}\left(\lambda_{\mathrm{i} 12}\right)^{*}\right], \quad \operatorname{Im} \xi^{d} \sim \operatorname{Im}\left[\lambda^{\prime}{ }_{21 \mathrm{k}}\left(\lambda^{\prime}{ }_{22 \mathrm{k}}\right)^{*}\right]$
- No stringent limits from other modes

E246/E470 collaboration

E246:

Japan	(1) KEK (2) Univ. of Tsukuba, (3) Tokyo Institute of Technology Russia (4) Univ. of Tokyo (5) Osaka Univ. Canada (6) Institute for Nuclear Research (RAS) (7) TRIUMF (8) Univ. of British Columbia (9) Univ. of Saskatchewan (10) Univ. of Montreal U.S.A. Taiwan (11) Yonsei Univ. (12) Korea Univ. (13) Virginia Polytech Institute (14) Princeton Univ. (15) National Taiwan Univ.

$\boldsymbol{E} 470$: (1) (2) (5) (6) (7) (8) (9) (10)
(6) : $\mathrm{CsI}(\mathrm{TI})$ calorimeter
(7) : fiber target, chamber gas recycler system
(14) : TD circuits

KEK E246 experiment

Features

- One of the important particle physics experiments representing the KEK-PS
- Ultimate experiment which could run with the limited KEK-PS intensity
- the experiment which requested the highest slow-extraction beam intensity
- First large international collaboration at KEK-PS
- Successful high precision particle physics experiment

Progress

- 1991 : Experiment approved
- 1992-1995 : Detector construction
- 1995 : K5 beamline upgrade \& tuning
- 1996-2000 : Data taking [$450+180$ (extension) shifts]
- 1999 : First result was published with $1 / 4$ of data
- 2001 : E470 data taking
- 2001-2003: Analysis
- 2004 : Letter paper publication of the final result
- 2006 : Final full paper publication

E246 experimental setup

[J.Macdonald et al.; NIM A506 (2003) 60]

Experimental principle of E246

- Stopped beam method (at rest K^{+}decay)
- coverage of all π^{0} directions
- symmetric decay phase space
- Double ratio measurement

$$
A_{T}=\left(A_{f w d}-A_{b w d}\right) / 2
$$

- small systematic errors
- null check with

$$
A_{0}=\left(A_{\text {fvod }}+A_{b w d}\right) / 2
$$

- Longitudinal filed method

$$
\begin{aligned}
& <\boldsymbol{B}\rangle / /\left\langle\boldsymbol{P}_{T}\right\rangle \\
& A_{e}{ }^{-} N_{c n} N_{c n}+N_{c c} N_{c c}
\end{aligned}
$$

bwd $-\pi^{0}(\gamma)$

fwd $-\pi^{0}(\gamma)$

Superconducting toroidal magnet

- Very precise 12 -fold rotational symmetry
- Online cryogenic system of easy operation

E246 detector at K5

Muon polarimeter

One-sector view

- Passive polarimeter with
- $A l$ muon stopper
- Left/Right positron counters

Easy analysis and simple systematics

Cross section

$$
\begin{aligned}
& \mu^{+} \rightarrow e^{+} v_{e} \bar{v}_{\mu} \\
& W\left(e^{+}\right) \propto 1+A \cos \theta
\end{aligned}
$$

Polarimeter analysis

Differential asymmetry analysis using C4 information

- $A_{T}(y)=\left[A(y)_{f v d}-A(y)_{b w d}\right] / 2$

$$
A(y)_{f(b)}=\frac{\left[N_{c w}(y)-N_{c c w}(y)\right]_{f(b)}}{\left[N_{c w}(y)+N_{c w}(y)\right]_{f(b)}}
$$

fwd events: $\cos \theta_{\pi^{0}(\gamma)}>0.341$
bwd events : $\cos \theta_{\pi^{0}(\gamma)}<-0.341$

- $P_{T}(y)=A_{T}(y) / \alpha(y)<\cos \theta_{T}>$

$$
\alpha(y)=A_{N}(y) / P_{N}
$$

$$
A_{N}(y)=\left[A(y)_{l e f t}-A(y)_{\text {right }} / 2\right.
$$

$P_{N}:$ MC calculation of in-plane P $<\cos \theta_{T}>$: kinematical attenuation of P_{T}

- $\left\langle P_{T}\right\rangle=\int P_{T}(y) w(y) \mathrm{d} y$
- $\operatorname{Im} \xi=<P_{T}>/<P_{T} / \operatorname{Im} \xi>$ MC calculation

Gradients due to slightly different x and z distributions between fwd and bwd

Two independent analyses

- Analyses A1 and A2 by two teams with
- their own analysis policy and
- event selection methods

Comparison of good $K_{\mu 3}$ events e.g. :1998

	2γ events	1γ events
A2	1221 k	1264 k
A1	918 k	909 k

■ Combination of the two analyses

- by resorting of events to 6 data sets
- averaging the 6 data sets

Merits of two analysis method

- Cross check of data quality by A_{0}, decay plane rotation θ_{r} and θ_{z} and P_{T}
- Comparison of sensitivity by normal asymmetry A_{N} and $<\cos \theta_{T}>$
- Check of data quality in e.g. A1 by comparing A1•A2 and A1•A2-bar
- Estimate of systematic error by comparing $<\cos \theta_{T}>$ of A1•A 2 from A1 and A2

E246 systematic errors

Source of Error	$\Sigma 12$	fwd/bwd	$\delta P_{T} \times 10^{4}$	Cancellation by $\Sigma 12$ and/or
e^{+}counter r-rotation	x	o	0.5	
e^{+}counter z-rotation	x	o	0.2	fwd/bwd almost
e^{+}counter ϕ-offset	x	o	2.8	
e^{+}counter r-offset	o	o	<0.1	all systematics
e^{+}counter z-offset u^{+}counter ϕ-offset	o	o	<0.1	except for
MWPC ϕ-offset (C4)	x	o	2.0	
CsI misalignment	o	o	1.6	
\boldsymbol{B} offset (ε)	x	o	3.0	
\boldsymbol{B} rotation (δ_{x})	x	o	0.4	
\boldsymbol{B} rotation (δ_{z})	x	x	5.3	μ^{+}field alignmen
K^{+}stopping distribution	o	o	<3.0	
μ^{+}multiple scattering	x	x	7.1	μ^{+}multiple scattering
Decay plane rotation (θ_{r})	x	o	1.2	
Decay plane rotation (θ_{z})	x	x	0.7	decay plane shifts due to - K^{+}stopping distribution - Detector inefficiency distribution etc.
$K_{\text {N2 } 2}$ DIF background	x	o	0.6	
K^{+}DIF background Analysis -	o	x	<1.9	
Total			11.4	

Result

$$
\begin{aligned}
& P_{T}=-0.0017 \pm 0.0023(\text { stat }) \pm 0.0011(\text { syst }) \\
& \quad\left(\left|P_{T}\right|<0.0050: 90 \% \text { C.L. }\right) \\
& \operatorname{Im} \xi=-0.0053 \pm 0.0071(\text { stat }) \pm 0.0036(\text { syst }) \\
& \quad(\operatorname{IIm} \xi \mid<0.016: 90 \% \text { C.L. })
\end{aligned}
$$

Phys. Rev. Letters 83, 4253 (1999) [first 1/4 data]
Phys. Rev. Letters 93, 131601 (2004) [full data] Phys, Rev. D73, 072005 1~34 (2006) [same result as PRL 93]

E470 : Direct emission in $K^{+} \rightarrow \pi^{+} \pi^{0} \gamma$

Internal Brems.(IB)

Direct (DE)

IB : Strong suppression due to $\Delta \mathrm{I}=1 / 2$ rule for $\mathrm{K}^{+} \rightarrow \pi^{+} \pi^{0}$
DE:

- Magnetic (M1) chiral anomalous term
- Electric (E1)? \Rightarrow Interference with IB

$B R(D E)$:

Important input for Chiral Perturbation
Theory (ChPT) (determination of $\mathrm{O}\left(p^{4}\right)$ terms)

```
BR ChPT}(DE)~0.4\times10-5
    (55<T < < 90MeV)
```

- Total branching ratio:
- $B R(D E)=[0.61 \pm 0.25$ (stat) ± 0.19 (syst) $] \times 10^{-5}$
- Partial branching ratio ($55<\mathrm{T}_{\pi}<90 \mathrm{MeV}$):
$B R(D E)=[0.32 \pm 0.13$ (stat) ± 0.10 (syst) $] \times 10^{-5}$
No evnidece for E1 interference
M.Aliev et al. , Phys. Lett. B554,7 (2003)

- Improved statistics in analysis
$B R(D E)=[0.38 \pm 0.08$ (stat) ± 0.07 (syst) $] \times 10^{-5}$
M.Aliev et al., Euro. Phys. C46, 61 (2006) 16

Other byproduct physics

- $K^{+} \rightarrow \pi^{0} \mathrm{e}^{+} \boldsymbol{v}\left(K_{\mathrm{e} 3}\right)$: denial of scalar and tensor couplings,

$$
f_{S} / f_{+}(0)=-0.002 \pm 0.026(\text { stat }) \pm 0.014(\text { syst }) ;
$$

$$
f_{T} / f_{+}(0)=-0.01 \pm 0.14(\text { stat }) \pm 0.09(\text { syst }) \quad \text { Phys. Letters B495, } 33 \text { (2000) }
$$

- $\Gamma\left(K_{\mu 3}\right) / \Gamma\left(K_{\mathrm{e} 3}\right)$ ratio : decay form factor $f_{0} q^{2}$ dependence λ_{0}, ChPT

$$
\lambda_{0}=0.019 \pm 0.005(\text { stat }) \pm 0.004(\text { syst }) \quad \text { Phys. Letters B513, } 311 \text { (2001) }
$$

- $K^{+} \rightarrow \pi^{+} \pi^{0} \pi^{0}$: form factors; g and k parameters

$$
g=0.518 \pm 0.039, k=0.043 \pm 0.020 \quad \text { Eur. Phys.J. C12,627 (2000) }
$$

- $K^{+} \rightarrow \mu^{+} v \gamma$: T violation by transverse polarizarion P_{T}
$P_{T}=-0.0064 \pm 0.0185$ (stat) ± 0.0010 (syst) Phys. Letters B562, 166 (2003)
- $K^{+} \rightarrow \pi^{0} \pi^{0} \mathrm{e}^{+} \boldsymbol{v}$: form factors, $\pi \pi$ scattering length (methodology)

$$
a_{0}{ }^{0}=0.45 \pm 0.43
$$

$$
\text { Phys. Rev. D70 (2004) } 037101
$$

- $K^{+} \rightarrow \pi^{0} \mu^{+} v \gamma$: branching ratio measurement

$$
B r=[2.4 \pm 0.5(\text { stat }) \pm 0.6(\text { syst })] \times 10^{-5} \quad \text { Phys. Letters B633, } 190 \text { (2006) }
$$

Toward much higher sensitivity to P_{T}

- Recommendation of the 2004 review committee

In most of its measurements, E246 was statistics limited. Additional kaon flux would have improved the results significantly. The experiment really requires a much more intense beam. However, in order to access $\mathrm{P}_{\mathrm{T}} \sim 10^{-4}$ which is the goal at J-PARC, obtaining a systematic uncertainty of $\delta \mathrm{P}_{\mathrm{T}}<10^{-4}$ is essential. Having demonstrated their ability to reduce systematic backgrounds, this experiment is ideal for the high flux that will be provided at JPARC. The possible order of magnitude sensitivity improvement in the muon transverse polarization attainable at that facility will explore interesting potential new sources of CP violation beyond the Standard Model.

- Increasing physics motivation for P_{T}
e.g. Statement by I.I. Bigi (hep-ph/0707132)
- P_{T} represents genuine T violation, and
- Constitutes prima facie evidence for CP violation in scalar dynamics
- While hoping for a 10^{-3} signal required considerable optimism, the prospect for an effect $\geqq 10^{-4}$ are more realistic.
- We need a new round of experiments that can measure the rates for $K \rightarrow \pi v v$-bar accurately with sample sizes $\sim \mathcal{O}\left(10^{3}\right)$ and mount another serious effort to probe the muon transverse polarization in $K_{\mu 3}$ decays

Goal of J-PARC TREK experiment

- We aim at a sensitivity of $\delta P_{T} \sim 10^{-4}$
$\delta P_{T}^{\text {stat }} \leq 0.05 \delta P_{T}^{\text {stat }}(\mathrm{E} 246) \sim 10^{-4}$ with

1) $\times 30$ of beam intensity,
2) $\times 10$ of detector acceptance, and
3) higher analyzing power
$\delta P_{T}^{\text {syst }} \sim 0.1 \delta P_{T}^{\text {syst }}($ E246 $) \sim 10^{-4}$ by
4) precise calibration of misalignments using data
5) correction of decay plane distribution offset

- Improvement of systematic errors

Source	δP_{T} in E246	
μ^{+}multiple scattering	7.1×10^{-4}	not existing
Decay plane angle $\left(\theta_{r}\right)$	1.2×10^{-4}	corrected
Decay plane angle $\left(\theta_{z}\right)$	0.7×10^{-4}	correcetd
B offset (ε)	3.0×10^{-4}	not existing
B field rotation $\left(\delta_{r}\right)$	0.4×10^{-4}	measured by data and corrected
B field rotation $\left(\delta_{z}\right)$	5.3×10^{-4}	measured by data and corrected
e^{+}counter shits and rotations	2.9×10^{-4}	not existing
Shifts of other elements	3.2×10^{-4}	measured by data and corrected

- E06 (TREK) was approved for stage-1 in the first J-PARC PAC in 2006.

Possible secondary line in Phase 1

Upgraded detector elements

Element	From E246 to E06 (TREK)	Reasons
Target	From 5 mm to 3.0 mm fiber Smaller and lighter	(1) rate performance (2) better background rejection (3) suppression of systematic errors
Tracking	Addition of C0 and C1)	(1) rate performance (2) better background rejection
Polarimeter	From passive to active	(1) acceptance improvement (2) analyzing power improvement (3) suppression of backgrounds (4) suppression of systematic errors
Muon field	From SCM to new magnets	(1) improvement of analyzing power (2) suppression of systematic errors
CsI(TI) readout	From PIN diode to APD	(1) rate performance (2) better background rejection

Active muon stopper

- Identification of muon stopping point/ decay vertex
- Measurement of positron energy $E_{\mathrm{e}^{+}}$and angle $\theta_{\mathrm{e}^{+}}$
- Large positron acceptance of nearly 4π
- Larger analyzing power
- Higher sensitivity
- Lower BG in positron spectra

Parallel plate stopper with
Gap wire chambers

Number of plates	31
Plate material	Al, Mg or alloy
Plate thickness	$\sim 2 \mathrm{~mm}$
Plate gap	$\sim 8 \mathrm{~mm}$
Ave. density	$0.24 \rho_{A l}$
μ^{+}stop efficiency	$\sim 85 \%$

- Small systematics for
$L / R e^{+}$asymmetry measurement
- Fit for $\pi^{0} f w d / b w d$ measurement
- Simple structure

Muon field magnet

- Uniform field of 0.03 T
- Precise field alignment of 10^{-3}
- Gap : 30 cm
- Pole face : $60 \mathrm{~cm} \times 40 \mathrm{~cm}$
- No. of coils : 24 or 12
- Mag. motive force : $3.6 \times 10^{3} \mathrm{~A}$ Turn/coil
- Total power : 6 kW
- Total weight : ~ 5 ton

Target and tracking

- Improvement of $K_{\pi 2} B G$ rejection power

APD readout of $\mathrm{CsI}(\mathrm{TI})$

- We want to improve the timing characteristics of $\mathrm{CsI}(\mathrm{Tl})$ by replacing PIN diode with APD

Parameter	E06 APD readout	E246 PIN readout
Electron yield	$47,000 / \mathrm{MeV}$	$11,000 / \mathrm{MeV}$
Noise level	not yet measured	70 keV
Energy resolution	$\sim 12 \%$ for C.R.	12% for C.R.
Time rsolution	3 ns for C.R.	12 ns for C.R. (9 ns for all)
Pulse width	$\sim 1.5 \mu \mathrm{~s}$	$15 \mu \mathrm{~s}$
Rate performance	$\sim 500 \mathrm{kHz}$	34 kHz
	new requirement : >10 times for last two	

One-module test was done to check higher-energy performance and high rate performance using e^{+}beam at LNS of Tohoku U.

- Study of pileup characteristics with high-intensity beam
-Typical events

Pol. misalignment analysis using $K_{\mu 3}$

Asymmetry analysis in terms of θ_{0} : in plane spin angle from z-axis

$$
\begin{aligned}
\overline{\mathbf{A}}\left(\theta_{0}\right)= & \int\left[\alpha_{0}\left\{\left(\epsilon_{\mathrm{r}}-\delta_{\mathrm{t}}\right) \cos \left(\omega \mathrm{t}-\theta_{0}\right)+\left(\epsilon_{\mathrm{z}}-\delta_{\mathrm{z}}\right) \sin \left(\omega \mathrm{t}-\theta_{0}\right)\right] \mathrm{dt}\right. \\
& \left.+\delta_{\mathrm{t}} \cos \theta_{0}-\delta_{\mathrm{z}} \sin \theta_{0}\right\} \quad \text { Time-integrated asymmetry }
\end{aligned}
$$

$$
\begin{aligned}
& A_{\text {sum }}\left(\theta_{0}\right)=\left(\overline{\mathrm{A}}_{\mathrm{fwd}}\left(\theta_{0}\right)+\overline{\mathrm{A}}_{\mathrm{bwd}}\left(\theta_{0}\right) / 2=\alpha_{0}\left\{\delta_{\mathrm{t}} \cos \theta_{0}-\delta_{\mathrm{z}} \sin \theta_{0}+\eta\left(\theta_{0}\right)\right\}\right. \\
& A_{\text {sut }}\left(\theta_{D}\right)=\left(\overline{\mathrm{A}}_{\mathrm{fwd}}\left(\theta_{0}\right)-\overline{\mathrm{A}}_{\mathrm{bwd}}\left(\theta_{0}\right)\right) / 2=\mathrm{F}\left(\mathrm{P}_{\mathrm{T}}, \theta_{0}\right) . \\
& \text { small residual } \\
& \text { of oscil ation }
\end{aligned}
$$

- $\delta P_{T}<10^{-4}$ for P_{T} determination from $A_{\text {sub }}$

Suppression of systematic errors in E06

Old errors

- μ^{+}field alignment : $\delta P_{T}<10^{-4}$
- P_{T} analysis free from misalignment
- μ^{+}multiple scattering : $\delta P_{T}=0$
- no longer relevant with the active polarimeter
- decay plane shifts : $\delta P_{T} \ll 10^{-4}$
- correction for P_{T} only with statistical uncertainty

Newcomer

- actıve polarimeter e^{+}analysis : $\delta P_{T}<10^{-4}$
- Perfect $f w d / b w d$ cancellation mechanism
- $\delta P_{T}{ }^{\text {syst }}<0.1 \delta P_{T}{ }^{\text {syst }}(\mathrm{E} 246)<10^{-4}$

Positron asymmetry measurement

Expected limit of E06 (TREK)

Summary

- P_{T} is a very sensitive probe of CP violation from new physics and an important quantity to study scalar interactions.
- The E246 experiment was performed successfully as a first big international collaboration at KEK-PS.
- Limits were given constraining several model parameters as;

$$
\begin{aligned}
& P_{T}=-0.0017 \pm 0.0023(\text { stat }) \pm 0.0011 \text { (syst) } \\
& \left(\left|P_{T}\right|<0.0050: 90 \% \text { C.L. }\right) \\
& \operatorname{Im} \xi=-0.0053 \pm 0.0071(\text { stat }) \pm 0.0036 \text { (syst }) \\
& \quad(|\operatorname{Im} \xi|<0.016: 90 \% \text { C.L. })
\end{aligned}
$$

- The J-PARC TREK experiment will further pursue P_{T} with the sensitivity of 10^{-4}.

END of SLIDES

Experimental data

$K^{+}{ }_{\mu 3}$ event selection

Data quality check

Null asymmetry check

$$
\begin{gathered}
A_{0}=\left[\left(N_{c w} / N_{c c w}\right)_{\text {total }}-1\right] / 2 \\
\text { total }=f w d+b w d
\end{gathered}
$$

Sensitivity check

$$
\begin{aligned}
& A_{N}=\left(A_{\text {left }}-A_{\text {right }}\right) / 2 \\
& A_{\text {left }}=\left[\left(N_{c w} / N_{c c w}\right)_{\text {left }}-1\right] / 2 \\
& A_{\text {right }}=\left[\left(N_{c w} / N_{c c w}\right)_{\text {right }}-1\right] / 2
\end{aligned}
$$

- 6 data sets for each period
- Open circles are 2γ events and dots are 1γ events.
- Null asymmetry is canceled by double ratio (fwd-bwd).

Systematics check

Consistency among data

$\operatorname{Im} \xi=-0.0055 \pm 0.0073$
$\left(\chi^{2} /\right.$ d.o.f. $\left.=0.78\right)$

Sector dependence

Decay plane rotation

$$
\left|\theta_{r}(f w d)-\theta_{r}(b w d)\right| \leq 4.6 \times 10^{-4} \mathrm{rad}
$$

$$
\left|\theta_{z}(f w d)+\theta_{z}(b w d)\right| \leq 2.6 \times 10^{-4} \mathrm{rad}
$$

$$
\delta P_{T} \sim 0.5 \Delta \theta
$$

Decay plane rotation

B field rotation

- Field Measurement
T. Ikeda, ef al., Nucl. Instr. and Meth. in Phys. Res. A 401 (1997) 243-262
- $\delta_{\mathrm{Z}}=1.3 \mathrm{mrad} \rightarrow \delta P_{7}\left(\delta_{\mathrm{Z}}\right)=5 \times 10^{-4}$

$$
\delta P_{T} \sim 0.4 \delta_{z}
$$

CsI(TI) photon detector

Segmentation
Number of crystals
$\Delta \theta=\Delta \phi=7.5^{\circ}$
Length of crystals
Inner radius
Outer radius
Solid angle
Readout
Light yield
Equiv. noise level
768
$25 \mathrm{~cm}\left(13.5 X_{0}\right)$
20 cm
50 cm
$\sim 75 \%$ of 4π
PIN diode
11000 p.e./MeV 65 keV
D.V.Dementyev et al. Nucl. Instr. Method A440 (2000) 51

$K_{\mu 3}$ event rate and sensitivity

Standard event selection conditions as in E246 :

```
1. \(65<M_{N}<185 \mathrm{MeV} / c^{2}\)
2. \(3500<M_{\text {TOF }}^{2}<18,000\left(\mathrm{MeV} / c^{2}\right)^{2}\)
3. \(p_{\mu^{+}}<185 \mathrm{MeV} / c\)
4. \(\mu^{+}\)incident into the polarimeter
5. \(\theta_{\mu^{+} \pi^{0}}<160^{\circ}\)
6. \(M_{\text {missing }}^{2}>-15,000\left(\mathrm{MeV} / c^{2}\right)^{2}\)
\(\Rightarrow\) Detector acceptance \(\Omega\left(K_{\mathrm{u} 3}\right)=1.14 \times 10^{-2}\)
```

$$
\begin{aligned}
N\left(K_{\mu 3}\right)= & N\left(K^{+}\right) \cdot \varepsilon_{\text {stop }} \cdot \operatorname{Br}\left(K_{\mu 3}\right) \cdot \Omega\left(K_{\mu 3}\right) \\
& =3.3 \times 10^{9} \text { (total E06 good events) }
\end{aligned}
$$

MC calculation for 10^{8} events and using $P_{T}=A_{T} / 0.258$:

```
Standard fwd / bwd analysis
    \(\delta P_{T}=6.9 / \sqrt{ } N\left(K_{\mu 3}\right)\)
    \(=1.2 \times 10^{-4}\)
```


Systematic error (1) associated with misalignment analysis

- P_{T} can be deduced regardless of the existence of the polarimeter misalignments, $\varepsilon_{r}, \varepsilon_{z}, \delta_{r}$ and δ_{z}.
- But, how much is the systematic error induced in this misalignment analysis?
- Simulation calculation with:

$$
\begin{aligned}
& P_{T}=0 \text { and } \delta_{z}=\delta_{r}=5^{0}=87 \mathrm{mr} \\
&==>\quad \delta P_{T}=(2 \pm 7) \times 10^{-4} \quad \text { for } 10^{8} \text { events }
\end{aligned}
$$

- Essentially statistical error of P_{T}
- No significant effect beyond the statistical error
- In reality, $\delta_{z} \sim \delta_{r} \sim 1 \mathrm{mr}$:
$\delta P_{T}{ }^{\text {syst }}$ should be $<10^{-4}$

Systematic error (2) due to $K_{\pi 2} B G$

- Dangerous $\pi^{+}->\mu^{+} v$ background with a P_{T} component
- Substantial reduction due to the addition of the C 0 chamber

Systematic error (3) associated with decay plane rotation correction

- Two rotation angles of θ_{z} and θ_{r}
- Relation: $\underline{\delta P_{T} \sim 0.5<\theta>}$ due to P_{N} and P_{L} admixture $<\theta_{\mathrm{r}}>$ is fwd/bwd cancelling, but $<\theta_{\mathrm{z}}>$ is not $f w d / b w d$ cancelling.
- P_{T} will be corrected for $\left\langle\theta_{Z}\right\rangle$ and $\left\langle\theta_{\mathrm{r}}\right\rangle$
- Statistical error of the correction $\delta<\theta_{z}>=\sigma\left(\theta_{z}\right) / \sqrt{ } N_{\text {total }}$ $\delta P_{T}\left(<\theta_{z}>\right) \ll \delta P_{T}^{\text {stat }} \sim 10^{-4}$

$$
\delta P_{T}\left(<\theta_{z}>\right) \ll 10^{4}
$$

$\left.\delta P_{T}\left(<\theta_{\mathrm{r}}\right\rangle\right) \sim \delta P_{T}{ }^{\text {stat }} \& f w d / b w d$

$$
\ll 10^{-4}
$$

Systematic errors (4) associated with positron analysis

- Systematics in the chamber measurement is left-right cancelling :
- cell inefficiency
- plate non-uniform thickness
- etc.
- further cancellation by fwd-bwd up to small $\Delta \rho=\rho_{f v d}-\rho_{b w d}$
- symmetrization of ρ with bias

$$
\begin{aligned}
& \rho^{f w d}(r, y, z)=\rho^{b w d}(r, y, z) \\
& P_{T} \text { fuvd }=P_{T}+\delta P_{T}^{\prime}, \\
& P_{T}{ }^{\text {bwd }}=-P_{T}+\delta P_{T}, \text { No problem }
\end{aligned}
$$

- Cancellation power will be calculated using data. δP_{T} should be $<10^{-4}$

Data symmetrization

- Suppression of systematic errors -
- K^{+}stopping distribution
- non-bias cut
- small loss of events

Center offset

Symmetrized

- μ^{+}stopping distributions

$$
\begin{aligned}
\rho^{f w d}(r, y, z) & \neq \rho^{b w d}(r, y, z) \\
& \boxed{ } \\
\rho^{f w d}(r, y, z) & =\rho^{b w d}(r, y, z)
\end{aligned}
$$

$$
\begin{aligned}
& P_{T}{ }_{T}^{\text {fwd }}=P_{T}+\delta P_{T}, \\
& P_{T}{ }_{T} b w d=-P_{T}+\delta P_{T}^{"}
\end{aligned}
$$

eliminates systematics in the polarimeter

Stopper μ SR study (Canada, Japan)

- Muon spin behavior was studied for candidate stopper materials Typical TF precession pattern

- TRIUMF surface muon beam with full polarization
- E1120 experiment to study $\mu \mathrm{SR}$ in Al and Mg alloys
- Transverse field ($T F$) and longitudinal field ($L F$) relaxation rates were measured with a 0.03 T field.
- Several candidate stopper materials were confirmed.

