Search for T violation in
 $K^{+} \rightarrow \pi^{0} \mu^{+} \boldsymbol{v}$ Decays
 J. Imazato
 IPNS, KEK

October 30, 2006
Joint Meeting of Pacific Region Particle Physics Community

- Transverse muon polarization P_{T}
- KEK-PS E246 experiment
- J-PARC E06 experiment

Transverse muon polarization

- P_{T} is T-odd and spurious effects from final state interaction are small. Non-zero P_{T} is a signature of T violation.
- Very clear channel to search for T violation. Long history of theoretical and experimental studies. (J.J. Sakurai, 1957)
- Powerful tool to study CP violation due to CTP theorem.
- One of the typical experiments of high-precision frontier. $c f$. neutron EDM, $g_{\mu}-2$

Theoretical aspects

- Standard Model contribution to P_{T} :
- Only from vertex radiative corrections and $P_{T}(\mathrm{SM})<10^{-7}$
- Spurious effects from final state interactions (FSI)
- Recent elaborate calculation : $P_{T}(\mathrm{FSI})<10^{-5}$

- There is a large window for new physics in the region of

$$
P_{T}=10^{-3} \sim 10^{-5}
$$

- There are theoretical models which allow sizeable P_{T} without conflicting with other experimental constraints.

Model descriptions of P_{T}

$$
\begin{gathered}
P_{T}=\operatorname{Im} \xi \cdot \frac{m_{\mu}}{m_{K}} \frac{\left|\vec{p}_{\mu}\right|}{\left[E_{\mu}+\left|\vec{p}_{\mu}\right| \vec{n}_{\mu} \cdot \vec{n}_{\nu}-m_{\mu}^{2} / m_{K}\right]} \quad \operatorname{Im} \xi=\frac{\left(m_{K}^{2}-m_{\pi}^{2}\right) \operatorname{Im} G_{S}^{*}}{\sqrt{2}\left(m_{s}-m_{u}\right) m_{\mu} G_{F} \sin \theta_{C}} \\
P_{T} \text { is sensitive to scalar interactions }
\end{gathered}
$$

- Multi-Higgs doublet (3 Higgs doublet) model
- $\operatorname{Im} \xi=\left(m_{K}{ }^{2} / m_{H}{ }^{2}\right) \operatorname{Im}\left(\gamma_{1} \alpha_{1}{ }^{*}\right)$
- $\left|\operatorname{Im}\left(\gamma_{1} \alpha_{1}{ }^{*}\right)\right|<544\left(m_{H} / \mathrm{GeV}\right)^{2}$ from the E246 limit
- $B \rightarrow \tau v X$ constraints also $\operatorname{Im}\left(\gamma_{1} \alpha_{1}{ }^{*}\right)$ but weaker $\left(<1900\left(m_{H} / \mathrm{GeV}\right)^{2}\right)$
- N-EDM and $b \rightarrow s \gamma$ constraint differently $\operatorname{Im}\left(\alpha_{1} \beta_{1}{ }^{*}\right)$
- SUSY with squark mixing
$-\operatorname{Im} \xi \propto \operatorname{Im}\left[V_{33}{ }^{H+} V_{32}{ }^{D L *} V_{31}{ }^{U R *}\right] / m_{H}{ }^{2}$
- $m_{H} \geq 140 \mathrm{GeV}$ from the E246 limit and no stringent limit from other modes
- SUSY with R-parity violation
$-\operatorname{Im} \xi^{l} \sim \operatorname{Im}\left[\lambda_{2 \mathrm{i2}}\left(\lambda_{\mathrm{i} 12}\right)^{*}\right], \quad \operatorname{Im} \xi^{d} \sim \operatorname{Im}\left[\lambda^{\prime}{ }_{21 \mathrm{k}}\left(\lambda^{\prime}{ }_{22 \mathrm{k}}\right)^{*}\right]$
- No stringent limits from other modes

KEK-PS E246 experiment

- Stopped K^{+}decay at K5
- SC Toroidal spectrometer

- Measurement of e^{+}emission $c w / c c w$ asymmetry when π^{0} in fwd/bwd directions

Data taking 1996-2000 ; Final result Phys. Rev. D73, 072005 (2006)

Superconducting toroidal magnet

E246 muon polarimeter

One-sector view

- Passive polarimeter with
- Al muon stopper
- Left/Right positron counters
simple analysis and systematics

Cross section

E246 result (2004)

$$
\begin{aligned}
& \text { Double ratio experiment } \\
& \begin{array}{c}
A_{T}=\left(A^{f w d}-A^{b w d}\right) / 2 \\
A^{f w d(b w d)}=\frac{N_{c w}-N_{c c w}}{N_{c w}-N_{c c w}} \\
P_{T}=A_{T} /\left\{\alpha<\cos \theta_{\mathrm{T}}>\right\} \\
\alpha: \text { analyzing power } \\
<\cos \theta_{\mathrm{T}}>: \text { attenuation factor } \\
\operatorname{Im} \xi=P_{T} / K F \\
K F: \text { kinematic factor }
\end{array}
\end{aligned}
$$

$$
\begin{gathered}
P_{T}=-0.0017 \pm 0.0023(\text { stat }) \pm 0.0011(\text { syst }) \\
\left(\left|P_{T}\right|<0.0050: 90 \% \text { C.L. }\right) \\
\operatorname{Im} \xi=-0.0053 \pm 0.0071(\text { stat }) \pm 0.0036(\text { syst }) \\
(|\operatorname{Im} \xi|<0.016: 90 \% \text { C.L. }) \\
\quad \text { Statistical error dominant }
\end{gathered}
$$

E246 systematic errors

Source of Error	$\Sigma 12$	$f w d / b w d$	$\delta P_{T} \mathrm{x} 10^{4}$
e^{+}counter r-rotation	x	o	0.5
e^{+}counter z-rotation	x	o	0.2
e^{+}counter f-offset	x	o	2.8
e^{+}counter r-offset	o	o	<0.1
e^{+}counter z-offset	o	o	<0.1
μ^{+}counter f-offset	x	o	<0.1
MWPC ϕ-offset $(\mathrm{C} 4)$	x	o	2.0
CsI misalignment	o	o	1.6
\boldsymbol{B} offset $(\varepsilon) \mathrm{x}$	o	3.0	
\boldsymbol{B} rotation $\left(\delta_{x}\right)$	x	o	0.4
\boldsymbol{B} rotation $\left(\delta_{z}\right)$	x	x	5.3
K^{+}stopping distribution	o	o	<3.0
μ^{+}multiple scattering	x	x	7.1
Decay plane rotation $\left(\theta_{r}\right) \mathrm{x}$	o	1.2	
Decay plane rotation $\left(\theta_{z}\right) \mathrm{x}$	x	0.7	
$K_{\pi 2}$ DIF background	x	o	0.6
K^{+}DIF background	o	x	<1.9
Analysis -	-	3.8	
Total		$\mathbf{1 1 . 4}$	

- Systematic error suppression is essential for a high-precision experiment
- Cancellation by Σ^{12} and/or fwd/bwd scheme
- Muon field alignment
- Detector misalignment
- Decay plane asymmetry
- Suppressed to < 10^{-3} by actual position/field measurements,

J-PARC experiment E06

- J-PARC : Proton Accelerator Research Complex in

Japan now under construction for completion in 2008

- We aim at a sensitivity of $\delta P_{T} \sim 10^{-4}$
$\delta P_{T}^{\text {stat }} \leq 0.1 \delta P_{T}^{\text {stat }}(\mathrm{E} 246) \sim 10^{-4}$ with

1) $\times 30$ of beam intensity,
2) $\times 10$ of detector acceptance, and
3) higher analyzing power
$\delta P_{T}{ }^{\text {syst }} \sim 0.1 \delta P_{T}{ }^{\text {syst }}(\mathrm{E} 246) \sim 10^{-4}$ by
4) precise calibration of misalignments using data
5) correction of systematic effects

- "Stage-1 Approval" was given in the 1st PAC meeting

Upgrade of the detector

E246 detector is upgraded for E06

- possible to achieve the level of $P_{T} \sim 10^{-4}$
- well known systematics
- Muon polarimeter : passive \rightarrow active
- Muon magnetic field $\quad:$ toroid \rightarrow muon field magnet
- Target
: smaller and finer segmentation
- Charged particle tracking : addition of two chambers
- $\mathrm{CsI}(\mathrm{Tl})$ readout
: PIN diode \rightarrow APD
- Electronics and data taking : TKO \rightarrow KEK-VME \& COPPER
- New analysis scheme

Active muon polarimeter

- Identification of muon stopping point/ decay vertex
- Measurement of positron energy $E_{\mathrm{e}^{+}}$and angle $\theta_{\mathrm{e}^{+}}$
- Large positron acceptance of nearly 4π
- Larger analyzing power
- Higher sensitivity
- Lower BG in positron spectra

Parallel plate stopper with Gap drift chambers

Number of plates	33
Plate material	Al, Mg or alloy
Plate thickness	$\sim 2 \mathrm{~mm}$
Plate gap	$\sim 8 \mathrm{~mm}$
Ave. density	$0.24 \rho_{A l}$
μ^{+}stop efficiency	$\sim 85 \%$

- Small systematics for
$L / R e^{+}$asymmetry measurement
- Fit for $\pi^{0} f w d / b w d$ measurement
- Simple structure

Muon field magnet

- Uniform field of 0.03 T
- Precise field alignment of 10^{-3}
- Gap : 30 cm
- Pole face : $60 \mathrm{~cm} \times 40 \mathrm{~cm}$
- No. of coils : 24
- Mag. motive force : 3.6×10^{3} A Turn/coil
- Total power : 6 kW
- Total weigt : $\sim 5 \mathrm{t}$

Target and tracking

- Better kinematical resolution
- Stronger $K_{\pi 2}$ dif μ^{+}BG suppression

- Addition of C0 and C1 GEM chambers with
- high position resolution
- higher rate performance

Alignment calibration

E246 : real measurement with precision of 10^{-3} J-PARC E06 : alignment using data for precision of 10^{-4}

(1) Reference frame = magnet gap
(2) Tracking system (using slits)

(3) $\operatorname{CsI}(\mathrm{Tl}) \pi^{0}$ detector (using $K_{\pi 2}$)

$$
\Delta \phi, \Delta \psi, \Delta \varphi
$$

(4) Polarimeter \& Muon field $\varepsilon_{\mathrm{r}}, \varepsilon_{Z}, \delta_{\mathrm{r}}, \delta_{\mathrm{Z}}$

Polarimeter alignment

- Use of:
- longitudinal pol. P_{L} from $K_{\mu 3}$ or $K_{\mu 2}$
- radial polarization P_{r} from $K_{\pi 2}-\pi^{+}$ decay in flight or r component of P_{L}

■ $e^{+} L / R$ asymmetries

$$
\begin{aligned}
& A\left(P_{L}\right)=\varepsilon_{\mathrm{r}} \cos \omega t+\delta_{\mathrm{r}}(1-\cos \omega t)+\left(\varepsilon_{\mathrm{z}}-\delta_{\mathrm{z}}\right) \sin \omega t \\
& A(\operatorname{Pr})=\left(\varepsilon_{\mathrm{r}}-\delta_{\mathrm{r}}\right) \sin \omega t+\delta_{\mathrm{z}}-\left(\varepsilon_{\mathrm{z}}-\delta_{\mathrm{z}}\right) \cos \omega t
\end{aligned}
$$

- Unique determination of
$\begin{array}{llll}\varepsilon_{\mathrm{r}} & \varepsilon_{\mathrm{z}} & \delta_{\mathrm{r}} & \delta_{\mathrm{z}}\end{array}$ verified with a MC study

Beamline at J-PARC

K0.8 (K1.1-BR)

Momentum	$800 \mathrm{MeV} / \mathrm{c}$
Momentum bite	$\pm 2.5 \%$
Acceptance	$6.5 \mathrm{msr} \% \Delta p / p$
K^{+}intensity	$3 \times 10^{6} / \mathrm{s}$
K / π ratio	>2
Beam spot	$1.04 \times 0.78 \mathrm{~cm}$
	(FWQM)
Final focus	achromatic

- Good K / π ratio due to two vertical focuses, FY and MS1, and a horizontal focus HFOC - Better performance than K5 - Alternate use with K1.1 by replacing B3

Sensitivity estimate

Statistical sensitivity

Time schedule \& collaboration

Proposed time schedule

Collaboration

- Canada	U.Saskatchewan
	TRIUMF
	UBC
	U. Montreal
	MIT
	U. South Carolina
	Iowa State U.
	KEK
	Tohoku U.
	Osaka U.
We are looking for	
more collaborators	

Summary

- P_{T} in $K_{\mu 3}$ is a very sensitive probe of new physics
- KEK-PS E246 obtained:

$$
\begin{aligned}
P_{T}=- & 0.0017 \pm 0.0023(\text { stat }) \pm 0.0011(\text { syst }) \\
& \left(\left|P_{T}\right|<0.0050: 90 \% \text { C.L. }\right)
\end{aligned}
$$

- J-PARC E6 experiment in the early stage of Phase 1 to pursue a limit of

$$
\delta P_{T} \sim 10^{-4} .
$$

- E246 detector will be upgraded for this sensitivity.
- We start now the first step toward:

Collaboration forming / Fund application / Detector R\&D

End of Slides

Dalitz plot

Method of experiment

- Stopped K^{+}decay
- Superior to in-flight decay
- Toroidal spectrometer

FoM $(A \sqrt{ } N)$ distribution

- E246 detector upgrade
-Well known performance -Well studied systematics
-Good alignment in magnet and $\mathrm{CsI}(\mathrm{Tl})$
-Lower cost

Detector acceptance

Features of E246

- Stopped beam method (at rest K^{+}decay)
- coverage of all π^{0} directions
- symmetric decay phase space
- Double ratio measurement

$$
A_{T}=\left(A_{f w d}-A_{b w d}\right) / 2
$$

- small systematic errors

P_{T} directions
- Longitudinal filed method $B / / \boldsymbol{P}_{T}$

$$
A_{e}+=\frac{N_{c w}-N_{c c u}}{N_{c N}+N_{c c u}}
$$

bwd $-\pi^{0}(\gamma)$

fwd $-\pi^{0}(\gamma)$

Possible origins of P_{T}

Effective four-fermion interaction

$$
\begin{aligned}
L= & -G_{F} / \sqrt{ } 2 \sin \theta_{\mathrm{C}} \overline{\bar{s}} \gamma_{\alpha}\left(1-\gamma_{5}\right) u \bar{v} \gamma^{\alpha}\left(1-\gamma_{5}\right) \mu \\
& +G_{S} \bar{s} u \bar{v}\left(1+\gamma_{5}\right) \mu+G_{P} \bar{S} \gamma_{5} u \bar{v}\left(1+\gamma_{5}\right) \mu \\
& +G_{V} \bar{s} \gamma_{\alpha} u \bar{v} \gamma^{\alpha}\left(1-\gamma_{5}\right) \mu+G_{A} \bar{s} \gamma_{\alpha} \gamma_{5} u \bar{v} \gamma^{\alpha}\left(1-\gamma_{5}\right) \mu+h . c .
\end{aligned}
$$

	$K_{\mu 3}\left(K^{+} \rightarrow \pi^{0} \mu^{+} v\right)$	$K_{\mu v \gamma}\left(K^{+} \rightarrow \mu^{+} \boldsymbol{v \gamma}\right)$
P_{T} origin interfering with G_{F}	G_{S} $($ scalar $)$	$G_{P}, G_{R}=\left(G_{V}+G_{A}\right) / 2$ $($ pseudoscalar \& right-handed)
$<P_{T}>=$	$\sim 0.3 \operatorname{Im} \Delta_{S}$	$\sim 0.1 \operatorname{Im} \Delta_{P}+0.3 \operatorname{Im} \Delta_{R}$
	$\operatorname{Im} \Delta_{S}=\frac{\sqrt{2} 2\left(m_{K}^{2}-m_{\pi}^{2}\right) \operatorname{Im} G s^{*}}{\left(m_{s}-m_{u}\right) m_{\mu} G_{F} \sin \theta_{C}}$	$\operatorname{Im} \Delta_{P}=\frac{\sqrt{2} m_{K}^{2} \operatorname{Im} G_{P}}{\left(m_{s}+m_{u}\right) m_{\mu} G_{F} \sin \theta_{C}}$
		$\operatorname{Im} \Delta_{R}=\frac{\sqrt{2} \operatorname{Im} G_{R}}{G_{F} \sin \theta_{C}}$

Target for E06

- Smaller size (smaller beam spot)
- Finer segmentation
- Sci. fiber of 20 cm length
- Clear optical fiber
- Light readout by SiPMTs

Diameter	6 cm
Active length	20 cm
Fiber size	$2.5 \times 2.5 \mathrm{~mm}$
No. of fibers	432
Light readout	4 clear fibers
Light yield	$\sim 10 /$ SiPMT

Tracking system

$\mathrm{CsI}(\mathrm{Tl})$ readout

- $\mathrm{CsI}(\mathrm{Tl})+\mathrm{APD}+$ Amplifier +FADC
- Electrons after APD : ~ $2 \times 10^{7} @ 100 \mathrm{MeV}$
- Max count rate / module : ~ 100 kHz
- Max K^{+}decay rate : ~ 20 MHz
- enough for the beam intensity in Phase 1
- Noise level : to be tested
- Module energy resolution : to be tested
-Energy resolution is determined by lateral shower leakage

Muon stopping distribution in the stopper

Analysis method

Not only fwd/bwd but also left/right

Electronics and data taking

- KEK-VME system with COPPER and FINESSE
- Full use of FADC-FINESSE, QTC+TDC FINESSE

